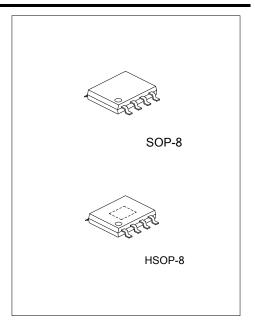


UNISONIC TECHNOLOGIES CO., LTD

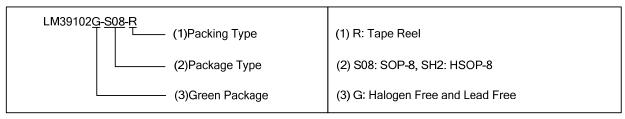
LM39102 Preliminary CMOS IC

1A LOW-VOLTAGE LOW-DROPOUT REGULATOR

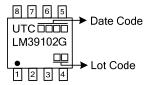

■ DESCRIPTION

The UTC **LM39102** is a low-dropout linear voltage regulator that provide low-voltage, high-current output.

The UTC **LM39102** can be used in a wide field because of Adjustable Output. UTC **LM39102** is fully protected with over current limiting, thermal shutdown, and reversed-battery protection.

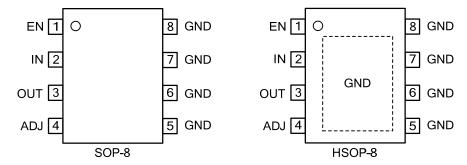

■ FEATURES

- * Adjustable output voltages refer to 1.24V
- * Dropout Voltage 410mV at 1A output Ideal for 3.0V~2.5V conversion Ideal for 2.5V~1.8V or 1.5V conversion
- * A very low ground current (typically 12mA at 1A)
- * ON/OFF control function
- * 1% initial accuracy
- * Built-in current limiting and thermal shutdown
- * Reversed-battery protection
- * Reversed-leakage protection
- * Fast transient response



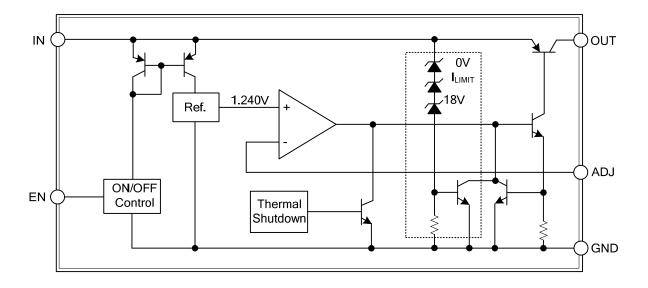
■ ORDERING INFORMATION

Ordering Number	Package	Packing
LM39102G-S08-R	SOP-8	Tape Reel
LM39102G-SH2-R	HSOP-8	Tape Reel



MARKING

<u>www.unisonic.com.tw</u> 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	EN	ON/OFF control terminal
2	IN	Power Supply
3	OUT	Regulator output
4	ADJ	Adjustment terminal: feedback input
5, 6, 7, 8	GND	Ground

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	18V	V
Enable Voltage	V_{EN}	+20	V
Junction Temperature	T_J	-40 ~ +125	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ OPERATING RATINGS (Note 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	+2.25 ~ +16	V
Enable Voltage	V_{EN}	+16	V
Maximum Power Dissipation	P _D	Note 2	

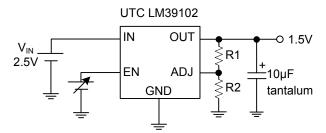
Notes: 1. The device is not guaranteed to function outside its operating rating.

2. $P_{D(max)}$ =($T_J(max)$ - T_A)+ θ_{JA} , where θ_{JA} -junction-to-ambient thermal resistance.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Case	SOP-8	θ_{JC}	50	°C/W
	HSOP-8		45	°C/W

■ ELECTRICAL CHARACTERISTICS


 $(V_{IN}=V_{OUT}+1V, V_{EN}=2.25V, T_J=25^{\circ}C, bold values indicate 0^{\circ}C \le T_J \le +125^{\circ}C, unless noted)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}	10mA	-1		1	%
		10mA≤I _{OUT} ≤1A, V _{OUT} +1V≤V _{IN} ≤8V	-2		2	%
Line Regulation		I _{OUT} =10mA, V _{OUT} +1V≤V _{IN} ≤16V		0.06	0.5	%
Load Regulation		V _{IN} =V _{OUT} +1V, 10mA≤I _{OUT} ≤1A		0.2	1	%
Output Voltage Temperature Coefficient (Note 1)	$\Delta V_{OUT}/\Delta T$			40	100	ppm/°C
		1 =100m \ \ \\\ = 10/		150	200	mV
		Ι _{Ουτ} =100mA, ΔV _{Ουτ} =-1%			250	mV
Drangut Valtage (Note 2)	\ <i>/</i>	I _{OUT} =500mA, ΔV _{OUT} =-1%		275		mV
Dropout Voltage (Note 2)	V_{DO}	I _{OUT} =750mA, ΔV _{OUT} =-1%		330	500	mV
		1 -10 01 - 10/		410	550	mV
		Ι _{Ουτ} =1Α, ΔV _{Ουτ} =-1%			630	mV
		I _{OUT} =100mA, V _{IN} =V _{OUT} +1V		700		μA
Craying Compant (Nata 2)		I _{OUT} =500mA, V _{IN} =V _{OUT} +1V		4		mA
Ground Current (Note 3)	I_{GND}	I _{OUT} =750mA, V _{IN} =V _{OUT} +1V		7		mA
		I _{OUT} =1A, V _{IN} =V _{OUT} +1V		12	20	mA
Current Limit	$I_{OUT(lim)}$	V _{OUT} =0V, V _{IN} =V _{OUT} +1V		1.8	2.5	Α
Enable Input						
Enable Input Valtage	V _{EN}	Logic Low (Off)			0.8	V
Enable Input Voltage		Logic High (On)	2.25			V
	I _{EN}	V _{EN} =2.25V	1	15	30	μA
Enable Input Current		V _{EN} -2.23V			75	μA
Enable input Current		V -0.0V			2	μA
		V _{EN} =0.8V			4	μA
Reference Voltage			1.228	1.240	1.252	V
			1.215		1.265	V
		Note 4	1.203		1.277	V
Adjust Pin Bias Current				40	80	nA
					120	nA
Reference Voltage Temperature Coefficient (Note 1)				20		ppm/°C
Adjust Pin Bias Current Temperature Coefficient				0.1	99.2	nA/°C

Notes: 1. Output voltage temperature coefficient is $\Delta V_{OUT(worst \, case)} + (T_{J(max)} - T_{J(min)})$ where $T_{J(max)}$ is +125°C and $T_{J(min)}$ is 0°C.

- 2. $V_{DO}=V_{IN}-V_{OUT}$ when V_{OUT} decreases to 99% of its nominal output voltage with $V_{IN}=V_{OUT}+1V$. For output voltages below 2.25V, dropout voltage is the input-to-output voltage differential with the minimum input voltage being 2.25V. Minimum input operating voltage is 2.25V.
- 3. I_{GND} is the quiescent current. I_{IN} = I_{GND} + I_{OUT} .
- 4. $V_{REF} \le V_{OUT} \le (V_{IN}-1V)$, 2.25 $V \le V_{IN} \le 16V$, 10mA $\le I_L \le 1A$.

■ TYPICAL APPLICATION CIRCUIT

1.5V/1A Adjustable Regulator

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.